A Novel Multi-task Deep Learning Model for Skin Lesion Segmentation and Classification

نویسندگان

  • XuLei Yang
  • Zeng Zeng
  • Si Yong Yeo
  • Colin Tan
  • Hong Liang Tey
  • Yi Su
چکیده

In this study, a multi-task deep neural network is proposed for skin lesion analysis. The proposed multi-task learning model solves different tasks (e.g., lesion segmentation and two independent binary lesion classifications) at the same time by exploiting commonalities and differences across tasks. This results in improved learning efficiency and potential prediction accuracy for the task-specific models, when compared to training the individual models separately. The proposed multi-task deep learning model is trained and evaluated on the dermoscopic image sets from the International Skin Imaging Collaboration (ISIC) 2017 Challenge “Skin Lesion Analysis towards Melanoma Detection”, which consists of 2000 training samples and 150 evaluation samples. The experimental results show that the proposed multi-task deep learning model achieves promising performances on skin lesion segmentation and classification. The average value of Jaccard index for lesion segmentation is 0.724, while the average values of area under the receiver operating characteristic curve (AUC) on two individual lesion classifications are 0.880 and 0.972, respectively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Melanoma detection with a deep learning model

Background: Skin cancer is one of the most common forms of cancer in the world and melanoma is the deadliest type of skin cancer. Both melanoma and melanocytic nevi begin in melanocytes (cells that produce melanin). However, melanocytic nevi are benign whereas melanoma is malignant. This work proposes a deep learning model for classification of these two lesions.    Methods: In this analytic s...

متن کامل

Non-melanoma skin cancer diagnosis with a convolutional neural network

Background: The most common types of non-melanoma skin cancer are basal cell carcinoma (BCC), and squamous cell carcinoma (SCC). AKIEC -Actinic keratoses (Solar keratoses) and intraepithelial carcinoma (Bowen’s disease)- are common non-invasive precursors of SCC, which may progress to invasive SCC, if left untreated. Due to the importance of early detection in cancer treatment, this study aimed...

متن کامل

Skin Lesion Analysis towards Melanoma Detection Using Deep Learning Network

Skin lesions are a severe disease globally. Early detection of melanoma in dermoscopy images significantly increases the survival rate. However, the accurate recognition of melanoma is extremely challenging due to the following reasons: low contrast between lesions and skin, visual similarity between melanoma and non-melanoma lesions, etc. Hence, reliable automatic detection of skin tumors is v...

متن کامل

A Novel Method for Skin Lesion Segmentation

Skin cancer has been the most usual and illustrates 50% of all new cancers detected each year. If they detected at an early stage, treatment can become simple and economically. Accurate skin lesion segmentation is important in automated early skin cancer detection and diagnosis systems. The aim of this study is to provide an effective approach to detect the skin lesion border on a purposed imag...

متن کامل

Neural Network-Based Learning Kernel for Automatic Segmentation of Multiple Sclerosis Lesions on Magnetic Resonance Images

Background: Multiple Sclerosis (MS) is a degenerative disease of central nervous system. MS patients have some dead tissues in their brains called MS lesions. MRI is an imaging technique sensitive to soft tissues such as brain that shows MS lesions as hyper-intense or hypo-intense signals. Since manual segmentation of these lesions is a laborious and time consuming task, automatic segmentation ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1703.01025  شماره 

صفحات  -

تاریخ انتشار 2017